€

Complete
Reference

i
T

v i

i
i

C++: The Complete Reference

that it is generally thought of as a special case, subject to its own constraints and

quirks. In part, this is because the most common file is a disk file, and disk files
have capabilities and features that most other devices don't. Keep in mind, however,
that disk file I/O is simply a special case of the general I/O system and that most of the
material discussed in this chapter also applies to streams connected to other types of
devices.

S Ithough C++ I/O forms an integrated system, file I/O is sufficiently specialized

<fstream> and the File Classes

To perform file I/O, you must include the header <fstream> in your program. It
defines several classes, including ifstream, ofstream, and fstream. These classes are
derived from istream, ostream, and iostream, respectively. Remember, istream,
ostream, and iostream are derived from ios, so ifstream, ofstream, and fstream also
have access to all operations defined by ios (discussed in the preceding chapter).
Another class used by the file system is filebuf, which provides low-level facilities to
manage a file stream. Usually, you don't use filebuf directly, but it is part of the other
file classes.

Opening and Closing a File

In C++, you open a file by linking it to a stream. Before you can open a file, you must
first obtain a stream. There are three types of streams: input, output, and input/output.
To create an input stream, you must declare the stream to be of class ifstream. To create
an output stream, you must declare it as class ofstream. Streams that will be performing
both input and output operations must be declared as class fstream. For example, this
fragment creates one input stream, one output stream, and one stream capable of both
input and output:

ifstream in; // input
ofstream out; // output
fstream 10; // input and output

Once you have created a stream, one way to associate it with a file is by using open().
This function is a member of each of the three stream classes. The prototype for each is
shown here:

void ifstream::open(const char *filename, ios::openmode mode = ios::in);
void ofstream::open(const char *filename, ios::openmode node = ios::out | ios:trunc);
void fstream::open(const char *filename, ios::openmode mode = ios::in | ios::out);

Chapter 21: C++ File 1/0

Here, filename is the name of the file; it can include a path specifier. The value of mode
determines how the file is opened. It must be one or more of the following values defined
by openmode, which is an enumeration defined by ios (through its base class ios_base).

ios:app
josate
ios::binary
10s::1n
10s:out
10s::trunc

You can combine two or more of these values by ORing them together.

Including ios::app causes all output to that file to be appended to the end. This
value can be used only with files capable of output. Including ios::ate causes a seek
to the end of the file to occur when the file is opened. Although ios::ate causes an
initial seek to end-of-file, /0 operations can still occur anywhere within the file.

The ios:in value specifies that the file is capable of input. The ios:out value
specifies that the file is capable of output.

The ios::binary value causes a file to be opened in binary moede. By default, all
files are opened in text mode. In text mode, various character translations may take
place, such as carriage return/linefeed sequences being converted into newlines.
However, when a file is opened in binary mode, no such character translations will
occur. Understand that any file, whether it contains formatted text or raw data, can
be opened in either binary or text mode. The only difference is whether character
translations take place.

The ios:trunc value causes the contents of a preexisting file by the same name to
be destroyed, and the file is truncated to zero length. When creating an output stream
using ofstream, any preexisting file by that name is automatically truncated.

The following fragment opens a normal output file.

ofstream out;
cut.open("test", ios::out);

However, you will seldom see open() called as shown, because the mode parameter
provides default values for each type of stream. As their prototypes show, for ifstream,
mode defaults to ios::in; for ofstream, it is ios::out | ios:trunc; and for fstream, it is
iosz:in | ios:out. Therefore, the preceding statement will usually look like this:

out.open("test"); // defaults to output and normal file

fios

‘Note i Depending o your compiler, 'the mode ;)nrnm{fh’r.ﬁ{rfstreta.rn::open() may not default
toin | out. Therefore, you might need to specify this explicitly.

C++: The Complete Reference

If open() fails, the stream will evaluate to false when used in a Boolean expression.
Therefore, before using a file, you should test to make sure that the open operation
succeeded. You can do so by using a statement like this:

if{!mystream) {
cout << "Cannot open file.\n";
// handle error

Although it is entirely proper to open a file by using the open() function, most
of the time you will not do so because the ifstream, ofstream, and fstream classes
have constructors that automatically open the file. The constructors have the same

parameters and defaults as the open() function. Therefore, you will most commonly
see a file opened as shown here:

ifstream mystream{'myfile"); // open file for input

As stated, if for some reason the file cannot be opened, the value of the associated
stream variable will evaluate to false. Therefore, whether you use a constructor to open
the file or an explicit call to open(), you will want to confirm that the file has actually
been opened by testing the value of the stream.

You can also check to see if you have successfully opened a file by using the
is_open() function, which is a member of fstream, ifstream, and ofstream. It has

this prototype:
bool is_open();

It returns true if the stream is linked to an open file and false otherwise. For example,
the following checks if mystream is currently open:

if (Imystream.is_open{)) {
cout << "File is not open.\n";
/7

To close a file, use the member function close(). For example, to close the file linked
to a stream called mystream, use this statement:

nystream.close() ;

The close() function takes no parameters and returns no value.

Chapter 21: C++ File 1/0

___| Reading and Writing Text Files

It is very easy to read from or write to a text file. Simply use the << and >> operators
the same way you do when performing console I/O, except that instead of using cin
and cout, substitute a stream that is linked to a file. For example, this program creates
a short inventory file that contains each item's name and its cost:

#include «icstream>

#include <fstream>

using namespace s

int main()
r

19

ofst ream out ("INVNTRY"); // output, normal file

if(lout) |
cout << "Cannct open INVENTORY file.\n";

return 1;

}

out << "Radios " << 39.95 << endl;
out << "Toasters " << 19.95 << endl;
out << "Mixers " << 24.80 << endl;

out .closel();
return 0;

The following program reads the inventory file created by the previous program
and displays its contents on the screen:

#include <iostream>
#include <fstream>
using namesvace std;

int main()

{
ifstream in("INVNTRY"); // input

if(lin) |
cout << "Cannot open INVENTORY file.\n";
return 1;

543

544 C++: The Complete Reference

char item[20];
float cost;

in »>> item >> cost;
cout << item << " " << cost << "\n";
in >> item >> cost;
cout << item << " " << cost << "\n";
in >> item >> cost;

cout << item << " " << cost << "\n";

in.close();
return 0;

In a way, reading and writing files by using >> and << is like using the C-based
functions fprintf() and fscanf(). All information is stored in the file in the same format
as it would be displayed on the screen.

Following is another example of disk I/O. This program reads strings entered
at the keyboard and writes them to disk. The program stops when the user enters
an exclamation point. To use the program, specify the name of the output file on the
command line.

#include <iostream>
#include <fstream>
using namespace std;

int main(int argc, char *argvi{])
{
if(argc!=2) {
cout << "Usage: output <filename>\n";
return 1;

ofstream outf{argv(l]); // output, normal file
if (lout) {

cout << "Cannot open output file.\n";
return 1;

Chapter 21: C++ File 1/0

char str{30};

cout << "Write strings te disk. Enter ! to stop.\n";

cout << ": ";
cin >> str;
out << str << endl;

} while (*sty !'= '!');

out.closel();
return 0;

When reading text files using the >> operator, keep in mind that certain character
translations will occur. For example, white-space characters are omitted. If you want
to prevent any character translations, you must open a file for binary access and use
the functions discussed in the next section.

When inputting, if end-of-file is encountered, the stream linked to that file will
evaluate as false. (The next section illustrates this fact.)

Unformatted and Binary 1/0

While reading and writing formatted text files is very easy, it is not always the most
efficient way to handle files. Also, there will be times when you need to store unformatted
(raw) binary data, not text. The functions that allow you to do this are described here.

When performing binary operations on a file, be sure to open it using the ios::binary
mode specifier. Although the unformatted file functions will work on files opened for
text mode, some character translations may occur. Character translations negate the
purpose of binary file operations.

Characters vs. Bytes

Before beginning our examination of unformatted 1/0, it is important to clarify an
important concept. For many years, I/O in C and C++ was thought of as byte oriented.
This is because a char is equivalent to a byte and the only types of streams available
were char streams. However, with the advent of wide characters (of type wchar_t) and
their attendant streams, we can no longer say that C++ I/0O is byte oriented. Instead,
we must say that it is character oriented. Of course, char streams are still byte oriented
and we can continue to think in terms of bytes, especially when operating on nontextual

545

546

C++: The Complete Reference

data. But the equivalency between a byte and a character can no longer be taken for
granted.

As explained in Chapter 20, all of the streams used in this book are char streams
since they are by far the most common. They also make unformatted file handling
easier because a char stream establishes a one-to-one correspondence between bytes
and characters, which is a benefit when reading or writing blocks of binary data.

put() and get()

One way that you may read and write unformatted data is by using the member
functions get() and put(). These functions operate on characters. That is, get() will
read a character and put() will write a character. Of course, if you have opened the
file for binary operations and are operating on a char (rather than a wchar_t stream),
then these functions read and write bytes of data.

The get() function has many forms, but the most commonly used version is shown
here along with put():

istream &get(char &ch);
ostream &put(char ch);

The get() function reads a single character from the invoking stream and puts that
value in ch. It returns a reference to the stream. The put() function writes ch to the
stream and returns a reference to the stream.

The following program displays the contents of any file, whether it contains text
or binary data, on the screen. It uses the get() function.

% #include <iostream>
%& #include <fstream>
5y

using namespace std;

9.5%

int main(int argc, char *argvi))
{
char ch;

if(argc!=2) {
cout << "Usage: PR <filename>\n";
return 1;

ifstream in(argv{l], ios::in ics: :binary) ;
if(tin)

cout << "Cannot ospen file.";

Chapter 21: C++ File 1/0

return 1;

while(in) { // in will be false when eof 1s reached
in.get(ch);
if(in) cout << ch;

As stated in the preceding section, when the end-of-file is reached, the stream
associated with the file becomes false. Therefore, when in reaches the end of the file,
it will be false, causing the while loop to stop.

There is actually a more compact way to code the loop that reads and displays
a file, as shown here:

while(in.get(ch))
cout << ch;

This works because get() returns a reference to the stream in, and in will be false when
the end of the file is encountered.

The next program uses put() to write all characters from zero to 255 to a file called
CHARS. As you probably know, the ASCII characters occupy only about half the available
values that can be held by a char. The other values are generally called the extended
character set and include such things as foreign language and mathematical symbols.
(Not all systems support the extended character set, but most do.)

#include <iostream>
#include <fstream>

using namespace std;

int main{)
{
int i;
ofstream out ("CHARS", ios::out | ios::binary);

if (lout) {
cout << "Cannot open output file.\n";
return 1;

547

548 C++: The Complete Reference

// write all characters to disk
for(i=0; i<256; i++) cut.put((char) 1);

cut.close(;;
return 0O;

B

You might find it interesting to examine the contents of the CHARS file to see what
extended characters your computer has available.

read() and write()

Another way to read and write blocks of binary data is to use C++'s read() and write()
functions. Their prototypes are

istream &read(char *buf, streamsize num);
ostream &write(const char *buf, streamsize num);

The read() function reads num characters from the invoking stream and puts them in the

buffer pointed to by buf. The write() function writes num characters to the invoking

stream from the buffer pointed to by buf. As mentioned in the preceding chapter,

streamsize is a type defined by the C++ library as some form of integer. It is capable of

holding the largest number of characters that can be transferred in any one 1/0 operation.
The next program writes a structure to disk and then reads it back in:

#include <iostream»>
#include <fstream>
#include <cstring>
using namespace std;

struct status {
char name[80];
double balance;
unsigned long account_num;

I

int main()

{

struct status acc;

Chapter 21: C++ File 1/0

strcpy (acc.name, "Ralph Trantor");
acc.balance = 1123.23;
acc.account_num = 34235678;

// write data
ofstream outbal ("balance", ios::out | ios::binary);
if (loutbal) {

cout << "Cannot open file.\n";

return 1;

outbal .write({(char *) &acc, sizeof(struct status));
outbal.closel();

// now, read back;
ifstream inbal("balance", ios::in | los::binary};
if (tinbal) {

cout << "Cannot open file.\n";

return 1;

inbal.read((char *) &acc, sizeof(struct status));

cout << acc.name << endl;

cout << "Account # " << acc.account_num;
cout.precision(2);

cout.setf (ios::fixed);

cout << endl << "Balance: $" << acc.balance;

inbal.close();
return 0;

As you can see, only a single call to read() or write() is necessary to read or write
the entire structure. Each individual field need not be read or written separately. As
this example illustrates, the buffer can be any type of object.

N The type casts inside the calls to read() and write() are necessary when operating
ote ~ . .) S
on a buffer that is not defined as a character array. Because of C++'s strong type checking,

a pointer of one type will not automatically be conrverted into a pointer of another type.

550

C++: The Complete Reference

If the end of the file is reached before num characters have been read, then read()
simply stops, and the buffer contains as many characters as were available. You can
find out how many characters have been read by using another member function,
called gcount(), which has this prototype:

streamsize gcount();

It returns the number of characters read by the last binary input operation. The
following program shows another example of read() and write() and illustrates
the use of gcount():

#include <iostream>
#include <fstream>

using namespace std;

. int main()

{
double fnuml4] = {99.75, -34.4, 1776.0, 200.1};
int 1;

ofstream out ("numbers", ios::out | ios::binary);
if(lout)

cout << "Cannot open file.";

return 1;

}
out.write((char *) &fnum, sizeof fnum);

out.close() ;

for(i=0; i<4; i++) // clear array
fnum{i] = 0.0;
ifstream in("nwnbers", ios::in | ios::binary);

in.read((char *) &fnum, sizeof fnum);

// see how many bytes have been read

cout << in.gcount() << " bytes read\n";

for(i=0; i<4; i++) // show values read from file
cout << fnum[i] << " ";

_

—

Chapter 21: C++ File 1/0

in.close{);

return 0;

The preceding program writes an array of floating-point values to disk and then
reads them back. After the call to read(), gcount() is used to determine how many
bytes were just read.

More get() Functions

In addition to the form shown earlier, the get() function is overloaded in several
different ways. The prototypes for the three most commonly used overloaded forms
are shown here:

istream &get(char *buf, streamsize jiuim);
istream &get(char *buf, streamsize nuim, char delin);
int get();

The first form reads characters into the array pointed to by buf until either numi-1
characters have been read, a newline is found, or the end of the file has been encountered.
The array pointed to by buf will be null terminated by get(). If the newline character
is encountered in the input stream, it is nof extracted. Instead, it remains in the stream
until the next input operation.

The second form reads characters into the array pointed to by buf until either ium-1
characters have been read, the character specified by delint has been found, or the end
of the file has been encountered. The array pointed to by buf will be nuli terminated by
get(). If the delimiter character is encountered in the input stream, it is 1ot extracted.
Instead, it remains in the stream until the next input operation.

The third overloaded form of get() returns the next character from the stream. It
returns EOF if the end of the file is encountered. This form of get() is similar to C's
getc() function.

getline()

Another function that performs input is getline(). It is a member of each input stream
class. Its prototypes are shown here:

istream &getline(char *buf, streamsize mun);
istream &getline(char *buf, streamsize inuin, char delim);

551

552

C++: The Complete Reference

The first form reads characters into the array pointed to by buf until either num-1
characters have been read, a newline character has been found, or the end of the file
has been encountered. The array pointed to by buf will be null terminated by getline().
If the newline character is encountered in the input stream, it is extracted, but is not put
into buf.

The second form reads characters into the array pointed to by buf until either num-1
characters have been read, the character specified by delim has been found, or the end
of the file has been encounterec.. The array pointed to by buf will be null terminated by
getline(). If the delimiter character is encountered in the input stream, it is extracted,
but is not put into buf.

As you can see, the two versions of getline() are virtually identical to the get(buf,
num) and get(buf, num, delim) versions of get(). Both read characters from input and
put them into the array pointed to by buf until either num-1 characters have been read
or until the delimiter character is encountered. The difference is that getline() reads
and removes the delimiter from the input stream; get() does not.

Here is a program that demonstrates the getline() function. It reads the contents of
a text file one line at a time and displays it on the screen.

// Read and display a text file line by line.

#include <iostream>
#include <fstream>
using namespace std:

int main(int argc, char *argv(])
{
if(argc!=2) {
cout << "Usage: Display <filename>\n";
return 1;

ifstream in(argv(i]); // input

if(lin) {
cout << "Cannot open input file.\n";

return 1;

char str([2557;

Chapter 21: C++ File 1/0 553

while(in) {
in.getline(str, 255); // delim defaults tc '\n'
if(in) cout << str << endl;

in.close();

return 0;

___| Detecting EOF

You can detect when the end of the file is reached by using the member function eof(),
which has this prototype:

bool eof();

It returns true when the end of the file has been reached; otherwise it returns false.
The following program uses eof() to display the contents of a file in both hexadecimal
and ASCII.

/* Display contents of specified file
in both ASCII and in hex.

*/

#include <iostream>

#include <fstream>

#include <cctype>

#include <Iiomanip>

using namespace std;

int main(int argc, char *argv([])
{
if(argc!=2) {
cout << "Usage: Display <filename>\n";
return 1;

554 C++: The Complete Reference

ifstream in(argv{l], ios::in ios::binary);
if{!in) {
cout << "Cannot open input file.\n";
return 1;

register int i, j;
int count = 0;
char c[16];

cout.setf (ios: :uppercase) ;

while(!fin.eof()) {
for(i=0; 1i<16 && tin.eocf(); i++) {
in.get(c[i]);
}
if(i<16) i--; // get rid of eof

for(j=0; Jj<i; J++)
cout << setw(3) << hex << (int) c[j];
for(; j<16; j++) cout << " n;

cout << "\t";

for(3=0; j<i; J++)
if (isprint(c{j])) cout << c[j];
else cout << ".";

cout << endl;

count++;
if (count==16) {
count = 0;
cout << "Press ENTER to continue: ";
cin.get () ;
cout << endl;

in.close();

return 0;

Chapter 21:

When this program is used to display itself, the first screen looks like this:

=

2F
6E
20
68
65
65
6E

D
70
6F
61

A
67
29
3D
3C

___1 The ignore() Function

2A
74
66
20
78
20
63

A
65
6D
6D
69
63

D
32
3C

20
73
69
41
2E
3C
6C
23
3E
61
65
6E
2C

A
29
20

44
20
6C
53

D
69
75
69

D
6E
73
74
20
7B
20

69
6F
65
43

A
6F
64
6E

A
69
70
20
63

D
7B

73
66

D
49
2A
73
65
63
23
70
61
6D
68

A

D

22 55 73

70
20

a
49
2F
74
20
6C
€9
3E
63
61
61
20

A
61

6C
73

-
4

20

D
72
3C
75
6E

D
65
69
72
20
20
67

Press ENTER to continue:

61
70
20
61

A
65
66
64
63

A7

20
6E

79
65
20
6E
23
61
73
65

20
63
69
64
69
6D
74
20
75
73
74
69
61
28
20

A 20

63
69
6E
20
6E
3E
72
3C
64
69
64
6E

6F
66
20
69
63

D
65

63

65
68
3B
74
67
72
6F
69

5E
69

74
65
oF
20
75
23
€D
74
3C
20

A
61
5B
63
74
70

65
64
74
68
54
69
3E

/* Display conte
nts of specified

file.. in bot
h ASCII and in h
ex...*/. . #includ

e <iostream>..#1
nclude <fstream>
..#include <ccty
pe>..#include <i
cmanip>..using n
amespace std; ...
.int main(int ar
gc, char *argvl[]
Yoo (..
=2) {..
<< "Usage: Displ

if {argc!
cout

You can use the ignore() member function to read and discard characters from the
input stream. It has this prototype:

istream &ignore(streamsize nuin=1, int_type delim=EOF);

It reads and discards characters until either num characters have been ignored (1 by
default) or the character specified by delim is encountered (EOF by default). If the
delimiting character is encountered, it is not removed from the input stream. Here,
int_type is defined as some form of integer.

The next program reads a file called TEST. It ignores characters until either a space

is encountered or 10 characters have been read. It then displays the rest of the file.

{

int main()

#include <iostream>
#include <fstream>

using namespace std;

ifstream in("test");

C++ File 1/0

555

556 C++: The Complete -Reference

if(tin) {
cout << "Cannot open file.\n";
return 1;

/* Ignore up to 10 characters or until first
space 1is found. */

in.ignore (10, ' ') ;

char c¢;

while(in) {
in.get{c);
if(in) cout << c;

in.close();
return 0;

__ | peek() and putback()

You can obtain the next character in the input stream without removing it from that
stream by using peek(). It has this prototype:

int_type peek();

It returns the next character in the stream or EOF if the end of the file is encountered.
(int_type is defined as some form of integer.)

You can return the last character read from a stream to that stream by using
putback(). Its prototype is

istream &putback(char c);

where c is the last character read.

__ | flush()

When output is performed, data is not necessarily immediately written to the physical
device linked to the stream. Instead, information is stored in an internal buffer until the
buffer is full. Only then are the contents of that buffer written to disk. However, you

Chapter 21: C++ File |/0 557

can force the information to be physically written to disk before the buffer is full by
calling flush(). Its prototype is

ostream &flush();

Calls to flush() might be warranted when a program is going to be used in adverse
environments (for example, in situations where power outages occur frequently).

Closing a file or termmating a program also flushes all buffers.

| Random Access

In C++'s I/O system, you perform random access by using the seekg() and seekp()
functions. Their most common forms are

istream &seekg(off_type offset, seekdir origiit);
ostream &seekp(off_type offset, seekdir originy;

Here, off_type is an integer type defined by ios that is capable of containing the largest
valid value that offset can have. seekdir is an enumeration defined by ios that determines
how the seek will take place.

The C++ 1/0 system manages two pointers associated with a file. One is the get
pointer, which specifies where in the file the next input operation will occur. The other
is the put pointer, which specifies where in the file the next output operation will occur.
Fach time an input or output operation takes place, the appropriate pointer is automatically
sequentially advanced. However, using the seekg() and seekp() functions allows you
to access the file in a nonsequential fashion.

The seekg() function moves the associated file's current get pointer offset number
of characters from the specified origin, which must be one of these three values:

ios::beg Beginning-of-file
{os::cur Current location
i0s:end End-of-file

The seekp() function moves the associated file’s current put pointer offset number
of characters from the specified origin, which must be one of the values just shown.

Generally, random-access 1/O should be performed only on those files opened for
binary operations. The character translations that may occur on text files could cause
a position request to be out of sync with the actual contents of the file.

558

C++: The Complete Reference

The following program demonstrates the seekp() function. It allows you to change
a specific character in a file. Specify a filename on the command line, followed by the
number of the character in the file you want to change, followed by the new character.
Notice that the file is opened for read /write operations.

#include <iostream>
#include <fstream>
#include <cstdlib>
using namespace std;

int main(int argc, char *argvi[])
{
iflarge!=4) {
cout << "Usage: CHANGE <filename> <character> <char>\n";

return 1;

fstream out(argv[l], ios::in ios::out | ios::binary) ;
if(lout) {
cout << "Cannot open file.";

return 1;

out.seekp(atoi(argv(2}), ios::beqg);
out.put (*argv{31);
out.close();

return 0;

For example, to use this program to change the twelfth character of a file called
TEST to a Z, use this command line:

s
i "“

% change test 12 27

The next program uses seekg(). It displays the contents of a file beginning with the
location you specify on the command line.

#include <iostream>
#include <fstream>

Chapter 21: C++ File I/0 559

#include <cstdlib>
using namespace std;

int main(int argc, char *argv(])
{
char ch;

if(arge!=3) {
cout << "Usage: SHOW <filename> <starting location>\n";
return 1;

ifstream in(argvil], ios::in l i0s: :binary);
if(lin) {

cout << "Cannot open file.";

return 1;

in.seekg(atoi(argv(2]), ios::beg);

while({in.get (ch})
ccut << ch;

return 0;

The following program uses both seekp() and seekg() to reverse the first <num>
characters in a file.

#include <iostream>
#include <fstream>
#include <cstdlib»>

using namespace std;

int main(int argc, char *argvl[])

s
8

if(argc!t=3) {
cout << "Usage: Reverse <filename> <num>\n";

return 1;

560 C++: The Complete Reference

fstream inout(argv[1i], ios::in ios::out ios::binary);

if(linout) ({
cout << "Cannot open input file.\n";
return 1;

long e, 1, J:
char cl, c2;
e = atol(argv([2]);

for(i=0, j=e; i<j; i++, j--) {
inout.seekg(i, ilos::beg);
inout.get(cl) ;
inout.seekg(j, ios::beg);
inout.get (c2);

inout.seekp(i, ios::beg);
incut.put{c2);
inout.seekp(j, ios::beg);
inout.put(cl);

inout.close () ;
return 0;

To use the program, specify the name of the file that you want to reverse, followed
by the number of characters to reverse. For example, to reverse the first 10 characters of
a file called TEST, use this command line:

% reverse test 10
‘m

[f the file had contained this:

Chapter 21: C++ File 1/0

Obtaining the Current File Position

You can determine the current position of each file pointer by using these functions:

pos_type tellg();
pos_type tellp();

Here, pos_type is a type defined by ios that is capable of holding the largest value that
either function can return. You can use the values returned by tellg() and tellp() as
arguments to the following forms of seekg() and seekp(), respectively.

istream &seekg(pos_type pos);
ostream &seekp(pos_type pos);

These functions allow you to save the current file location, perform other file
operations, and then reset the file location to its previously saved location.

] 1/0 Status

The C++ 1/0 system maintains status information about the outcome of each 1/0
operation. The current state of the 1/O system is held in an object of type iostate,
which is an enumeration defined by ios that includes the following members.

Name Meaning

ios::goodbit No error bits set
i0s:eofbit 1 when end-of-file is encountered; 0 otherwise

ios::failbit 1 when a (possibly) nonfatal /O error has occurred;
0 otherwise

ios:badbit 1 when a fatal I/O error has occurred; 0 otherwise

There are two ways in which you can obtain 1/0 status information. First, you can
call the rdstate() function. It has this prototype:

iostate rdstate();

It returns the current status of the error flags. As vou can prebably guess from looking
at the preceding list of flags, rdstate() returns goodbit when no error has occurred.
Otherwise, an error flag is turned on.

561

8562 C++: The Complete Reference

The following program illustrates rdstate(). It displays the contents of a text file.
If an error occurs, the program reports it, using checkstatus().

#include <iostream>
#include <fstream>
using namespace std;

void checkstatus(ifstream &in);

int main{int argc, char *argvi])
{
if(arge!=2) [
cout << "Usage: Display <filename>\n";

return 1;

ifstream in(argviLi]);

1f(!'in) {
cout << "Cannot open input file.\n";
return 1;

.

while(in.get(c))
(in) cout << ¢;
checkstatus (in) ,

checkstatus (in) ; // check final status
in.close();
return 0;

void checkstatus (ifstream &in)
{
ios::iostate i;

i = in.rdstate();

if(i & ios::eofbit)
£ << "EOF encountered\n";

|

Chapter 21: C++ File 1/0

else 1f£(1 % ios::failbit)
cout << "Non-Fatal I/0 errcr\n”;
else 1f(1 & ios::badbit)

cout << "Fatal I/O error\n";

This program will always report one "error.” After the while loop ends, the final call
to checkstatus() reports, as expected, that an EOF has been encountered. You might find
the checkstatus() function useful in programs that you write.

The other way that you can determine if an error has occurred is by using one or
more of these functions:

bool bad();
bool eof();
bool fail();
bool good();

The bad() function returns true if badbit is set. The eof() function was discussed
earlier. The fail() returns true if failbit is set. The good() function returns true if there
are no errors. Otherwise, it returns false.

Once an error has occurred, it may need to be cleared before your program continues.
To do this, use the clear() function, which has this prototype:

void clear(iostate flags=ios::goodbit);

If flags is goodbit (as it is by default), all error flags are cleared. Otherwise, set flags as
you desire.

Customized 1/0 and Files

In Chapter 20 you learned how to overload the insertion and extraction operators
relative to your own classes. In that chapter, only console I/0O was performed, but
because all C++ streams are the same, you can use the same overloaded inserter or
extractor function to perform I/O on the console or a file with no changes whatsoever.
As an example, the following program reworks the phone book example in Chapter 20
so that it stores a list on disk. The program is very simple: It allows vou to add names
to the list or to display the list on the screen. It uses custom inserters and extractors to
input and output the telephone numbers. You might find it interesting to enhance the
program so that it will find a specific number or delete unwanted numbers.

564 C++: The Complete Reference

#include <iostream>
#include <fstream>
#include <cstring>
using namespace sta;

class phonebook {
char name[80];
char areacode{d];
char prefixi4];
char num{5];
public:
phonebock () { };
phonebook (char *n, char *a, char *p, char *nm)
{

strcpy {name, nj;
strepy (areacode, a);
strcpy (prefix, p);
strcpy (num, nm);
}
friend ostream &operator<< (ostream &stream, phonebook o)
friend lstream &operator>>(istream &stream, phonebock &o);
b

// Display name and phone number.
ostream &operator<<(ostream &streamn, phonebook o)
{

stream << o.name << " "

stream << " (" << o.areaccde << ") ";

stream << o.prefix << "-";

stream << o.num << "\n";

return stream; // must return stream

// Input name and telephone number.
istream &operator>>(istream &stream, phonebook &o)
{

cout << "Enter name: ";

stream >> o.name;

cout << "Enter area code: ";

stream >> o.areacode;
W

cout << "Enter prefix: ";

stream => o.prefix:

"

cout << "Enter numher: ;

streamn >> C.num;
cout << "\n";

return stream;

int main()

return 1;

-

cout << "1. Enter numbers\n";

cout << "2. Display numbersi\n";

cout << "3. Quit\n";

cout << "\nEnter a choice: ";

} while(c<'l' |} c>'3%);
switchi(c) {

a;

n

‘< "Entry is: ;

// show on screen

pb << a; // write to disk

pb.clear{); [/
cout << endl;:

, ifos::in | los::out

Chapter 21:

108::appl;

cout << "Cannot open phone book file.in";

C++ File 1/0

565

566 C++: The Complete Reference

break;

case '3':
pb.close();
return 0;

Notice that the overloaded << operator can be used to write to a disk file or to the

screen without any changes. This is one of the most important and useful features of
C++'s approach to 1/0.

